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Concentration dependence of droplet deformation in a phase separation process
under an electric field
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We show how deformation of droplets, arising in a phase separation process of a two-phase dielectric or
conducting liquid composite material under a low frequency electric field, depends on their volume fraction.
The electric interactions between distorted particles is taken into account in a self-consistent way based on the
effective medium approach. It follows from our model that the main physical mechanism responsible for the
dependence of droplets’ deformation on the volume fraction is the formation of an effective anisotropic
medium. A two-parameter condition of the droplet instability was derived as a function of the dielectric
permittivity or conductivity mismatch between the two phases and the volume fraction of the inclusions.
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I. INTRODUCTION

Anisotropy introduction in originally isotropic materials
widely considered as an effective way to obtain desira
mechanical@1#, ferroelectric@2,3#, and nonlinear optical ma
terial properties@4–6#. During the last decade much atte
tion has been paid to the use of external electric fields
achieve this goal. The desired modification of a materia
possible if ~i! material demonstrates a high susceptibil
with respect to an external field and~ii ! induced changes ar
sufficiently stable. Two different approaches are usually
plied. One possibility is to introduce an anisotropy at t
molecular level@7,8#. Application of a strong constant elec
tric field to a homogeneous glass or polymer sample, he
to an elevated temperature, results in breakdown of the m
roscopic inversion symmetry due to ion displacements an
reorientation of molecular dipoles@7,9#. The asymmetry is
‘‘frozen in,’’ when the sample is cooled down. Such a tre
ment is termed ‘‘the thermal poling.’’ Recently, experimen
investigations@10,11# have shown that thermal poling of ho
mogeneous silicate glass probably stimulates preferent
oriented crystallization, which enhances the third-order n
linearity in addition to the breakdown of the inversion sym
metry.

Another approach is based on the use of composite m
rial, whose properties strongly depend on its structural
crogeometry. To satisfy the conditions~i! and~ii ! for a com-
posite material an electric field should be applied dur
phase separation process and removed after quenching
dicative experiments carried out for a number of nonpo
polymer systems subject to a low-frequency electric fieldE
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51210 kV/cm @12,13# demonstrated formation of stabl
strongly elongated particles with a volumeV
'1027–1028 cm3. In general, the degree of elongation d
pends in a complicated way on relations between the po
ization energyUel of the particle, the interface energyUs ,
and the elastic ones@14#. The influence of elastic strain
upon the shape of inclusions can be neglected if phase s
ration process occurs in a liquid-liquid system. Such an
proximation is also acceptable for glass melts with a form
micro-crystal phase and polymer melt/solvent system
where inclusions grow like liquid drops and are crystalliz
by aftercooling@12,15#.

Effect of an external electric field on the shape of a dro
let surrounded by a liquid dielectric matrix has been th
oughly investigated by Garton and Krasucki@16#, who con-
sidered the balance between the electric and surface forc
was shown that~1! the droplet is approximately an ellipsoi
elongated along the electric field and~2! at a certain electric
field the droplet becomes unstable and breaks up on co
tion that the ratio of the dielectric constants of two comp
nents is bigger than a critical valuepcr'20. The contribu-
tion of the electrostriction effect, which gives rise to
change of the densityr under an electric field, was neglecte
in Ref. @16#. In such a case the expression for the surfa
electric forces is reduced to the much simpler Maxwell str
tensor. The approach is exact for incompressible liquids,
already for weakly compressible media the approximation
satisfactory only for low-frequency electric fields, whe
the contribution of the electrostriction effect2r(]e/
]r)(E2/8p) is compensated by a change of the hydrosta
pressureP and the relationP2r(]e/]r)(E2/8p)5const re-
mains valid@14,17#.

For magnetic suspensions under magnetic field@18# and
electrorheological fluids in electric fields@19#, a slightly dif-
ferent formalism, based on the consideration of the comp
©2004 The American Physical Society04-1
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tion between the magnetic/electric polarization energy
the surface energy, was used. The equilibrium shape
droplet corresponds to the minimum of the free energy

F5Uel1Us ~1!

with respect to the particle shape at givenV and T5const.
This method gives results which are similar to those obtai
from the balance equation for forces@16,18#.

The one-particle approximation for the polarization e
ergy @16–19# is only valid in the limit of a small volume
fraction f of embedded particles, when the electric interact
between droplets can be neglected. Consequently, this
proach results in an expression for the droplet deformat
which is independent of the inclusion concentration@16–19#.

To modify properties of a macroscopic system to a deg
suitable for a practical application a remarkable value off is
usually required. On increase of the second phase conce
tion, characteristics of medium surrounding a precipitat
particle during phase separation are modified. Such a m
fication can result in different magnitudes of a droplet def
mation at different stages of phase separation process,
was recently observed@13#.

In our work we extend the model of Refs.@16,18# to the
case of finite-f composite materials by considering the ele
tric interparticle interaction, which becomes significant
increase off. Deformation of an individual inclusion is
treated in a self-consistent way, taking into account the lo
electric field, which is formed by the system of distort
inclusions. We derive the dependence of a droplet defor
tion on the inclusion volume fraction and the droplet ins
bility criterion for a given value off.

II. MODEL

We consider a two-component system built from identi
dielectric liquid droplets immersed into a liquid dielectr
matrix. The dielectric permittivities of these components
e ( in) and e (m),e ( in) for the inclusion and the host, respe
tively. Such a two-component ‘‘inclusion-host’’ system
nonsymmetric with respect to the two phases; the prop
demonstrated by typical composite system investigated
Refs. @12,13,18#, for which separation of a matrix and
phase that forms inclusions was immediately observed.

The free energy of an ellipsoidal particle elongated alo
the direction of a low-frequency~the field is assumed uni
form over the particle size! electric field E, which corre-
sponds to thez axis, is given by

F152 1
2 Pz~g!E1as~g!V2/3, ~2!

whereg5a/b is the ratio of the ellipsoid semiaxes (a and
b), a is the interface tension coefficient,Pz(g) is the dipole
moment of the particle, and

V2/3s~g!5S 9p

2g2D 1/3S 11
g

ec~g!
sin21@ec~g!# DV2/3 ~3!

is the ellipsoid surface, withec(g)5(12g22)1/2 being the
eccentricity.
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Within the effective medium approach the analyzed s
tem is considered as a set of identical noninteracting el
soidal particles with a dielectric permittivitye ( in) in a con-
focal coat with e (m), immersed in effective anisotropi
medium. The components of the effective dielectric perm
tivity tensore (e f f) satisfy the following condition:

e (m),ex
(e f f)5ey

(e f f),ez
(e f f),e ( in). ~4!

In this case the equation for the electrostatic potential dis
bution is

ex
(e f f) ]2w

]x2
1ey

(e f f) ]2w

]y2
1ez

(e f f) ]2w

]z2
50. ~5!

By means of the coordinate transformationx85x/
Aex

(e f f), y85y/Aey
(e f f),z85z/Aez

(e f f) Eq. ~5! is reduced to
the Laplace equation for isotropic medium,Dw50 @14#. In
this way the electrostatic problem for an ellipsoid charact
ized by ag, embedded in an anisotropic medium, is tran
formed into the problem for an ellipsoid with a renormaliz
g r5g(ex

(e f f)/ez
(e f f))1/2 in an isotropic medium@20#.

For a coated inclusion solution of the Laplace equat
with the boundary conditions corresponding to the continu
of the potential and the normal component of the elec
induction on the ‘‘inclusion-coat’’ and ‘‘coat–effective me
dium’’ interfaces@21# results in the following expression fo
the dipole moment of an inclusion with a volumeV:

Pz~g!5~e ( in)2e (m)!
e (m)1nz~g r !~ez

(e f f)2e (m)!

e (m)1nz~g r !~e ( in)2e (m)!

EV

4p
,

~6!

where

nz~g r !5
12ec~g r !

2

ec~g r !
3

$tanh21@ec~g r !#2ec~g r !% ~7!

is the depolarization coefficient along thez axis @14# and the
renormalized semiaxis ratiog r,g takes into account the ef
fect of macroscopic dielectric anisotropy.

In order to determinee (e f f) we use the Maxwell-Garnet
approximation~MGA!, which takes into account the dipola
interparticle interaction by means of the Lorenz local fie
@22#. Strictly speaking, the MGA is not applicable to system
with a high density of embedded particles, where a stro
correlation between particles’ position requires account
both the pair or higher-order particle correlation and high
multipole moments contribution into the interparticle inte
action. However, this approximation gives very good resu
for the description of properties of random composite s
tems even with remarkable magnitudes off ,0.4, when the
component identification as ‘‘inclusion-host’’ mentione
above is possible@23#. For the simple-cubic arrangement o
particles the MGA is exact~within the dipole approximation!
and for other ordered systems principal features related to
dependence of the dielectric permittivity onf can also be
analyzed within the MGA@19,24#.
4-2
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Taking into account the macroscopic anisotropy of
medium, the components ofe (e f f) are determined by the sys
tem of nonlinear equations@20#

ez
(e f f)

e (m)
5

11@nz~g r !~12 f !1 f #~p21!

11nz~g r !~12 f !~p21!
, ~8!

ex
(e f f)

e (m)
5

11@nx~g r !~12 f !1 f #~p21!

11nx~g r !~12 f !~p21!
, ~9!

wherenx(g r)5@12nz(g r)#/2, andp5e ( in)/e (m) is the ratio
of the dielectric permittivities. Within the effective medium
approach the free energyF of a unit volume of a composite
material can be written as

F52
1

8p
«z

(e f f)E21
f

V1/3
as~g!. ~10!

Taking into account that the MGA is exact for the model
identical coated particles filling the entire space@23#, Eqs.
~8! and ~10! can be rewritten as

FIG. 1. Dependence of the ellipsoid semiaxis ratiog(L) on the
dimensionless parameterL for ~a! different volume fractions of in-
clusions andp530; 1, small volume fraction limitf→0; 2, f
50.05; 4, f 50.4 and~b! different ratios of the dielectric constan
and f 50.2; 1, p550; 2, p535; 3, p525. In this paper function
log~x! designates the decimal logarithm ofx.
01150
e

f

ez
(e f f)

e (m)
5114p f qz~g!, ~11!

F5F1

f

V
2e (m)

E2

8p
, ~12!

whereqz5Pz(g)/(VEe (m)) is the effective polarizability of
a volume unit of the model system. Therefore, minimu
search ofF or F1 with respect tog gives an identical result
The equation determining the position of the free energyF1
extremum can be written as

S ds~g!

dg D S dqz~g!

dg D 21

5L. ~13!

The right-hand side of Eq.~13! is a dimensionless paramete
L5(e (m)E2V1/3)/(2a), which characterizes the relativ
strength of the electric and surface forces.

Figure 1 shows the dependence of the droplet deforma
g(L), Eq. ~13!, for different values ofp and f. This depen-
dence is either a monotonic or an S-shaped curve, just
was obtained within the one-particle approximation for t
free energy@16,18#. However, one can see,~Fig. 1! that in
addition to the dependence on the dielectric permittivity ra
p, the deformation depends on the volume fraction and
very sensitive to a change off at largep. Even an increase o
f up only to 5% significantly displacesg(L) and makes the S
shape less curved, as compared to the limitf→0 analyzed in
Ref. @16#. @cf. curve 1 and curve 2, Fig. 1~a!#. For a small but
finite volume fraction the deformation is described well
Eq. ~13! with the following approximations for Eqs.~6!, ~8!,
and~9! ~Fig. 2!:

Pz~g!'
e (m)~e ( in)2e (m)!

e (m)1nz~g r !~e ( in)2e (m)!

EV

4p
, ~14!

ez
(e f f)

e (m)
'11

f ~p21!

11nz~g r !~p21!
, ~15!

ex
(e f f)

e (m)
'11

f ~p21!

11nx~g r !~p21!
. ~16!

FIG. 2. Dependence of the ellipsoid semiaxis ratiog on the
dimensionless parameterL. Solid curve, Eqs.~6!–~9! and dashed
curve, Eqs.~14!–~16!; f 50.05, p530.
4-3
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As compared to the case of noninteracting partic
@16,18#, g was replaced byg r in Eq. ~14!. This replacement
takes into account anisotropic properties of the effective m
dium. Therefore, whenf !1 the differences between the r
sults of the one-particle approximation and the MGA a
mainly due to the macroscopic anisotropy of the compo
system.

III. DISCUSSION

The derivative of the polarization energy density with r
spect tog can be considered as an effective polarizat
surface forceT on condition that an ellipsoidal shape is kep
This force contributes to an inclusion elongation and its m
nitude is

T5
E2

8p

dez
(e f f)

dg
5

E2e (m)

2

dqz

dg
. ~17!

The droplet deformation dependence onf is determined by
the behavior of this force as a function of the volume fra
tion. In the analysis above we consideredf as a parameter. I
is convenient now to viewf as an independent variable alon
with g and introduce the functionr (g, f )5]qz /]g. Let g be
fixed. If r (g, f ) is a decreasing function off, thenL increases
when f increases@see Eq.~13!#, i.e., the curveg(L) is dis-
placed toward largerL. It means that for a givenL the de-
formation decreases if the value off increases and
]r (g, f )/] f ,0.

From the practical point of view the most interesting si
ation corresponds top@1 and stable strongly elongated in
clusions. For the caseg@1 the depolarization coefficient ca
be estimated as

nz~g!'
1

g2
Z~g!, Z~g!5 ln~2g!21. ~18!

Equation~18! is already valid forg.4 within a 10% accu-
racy.Z(g) is a slowly varying function and in a first approx
mation can be considered as a constant. Taking into acc
that for f !1g r'g(11 f p)21/2 we obtain

]

] f
r ~g, f !.0 for g.g0'A~11 f p!pZ~g0!, ~19!

]

] f
r ~g, f !,0 for g,g0 . ~20!

Thus, in the regiong@1 for a finite f 5 f f in the curveg(L)
is shifted towards higherL with respect to the curve forf
→0 if g,g0( f f in) and to lower values ofL if g.g0( f f in)
@Fig. 1~a!#. In accordance with Eq.~19!, a rise off f in results
in an increase ofg0( f f in). These results mean that for
given L and the volume fraction increase the deformat
decreases ifg,g0( f f in) and increases ifg.g0( f f in).

Differentiating Eq.~13! with respect toL and taking into
account that
01150
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d2F

dg2
5aV2/3

d2s~g!

dg2
2

e (m)E2V

2

d2qz~g!

dg2
, ~21!

we obtain

dg

dL

d2F

dg2
5aV2/3

dqz~g!

dg
. ~22!

The effective polarizability alongz axis,qz(g), increases if a
particle becomes more elongated and conseque
(dg/dL)(d2F/dg2).0. Thus, a point wheredg(L)/dL,0
corresponds to a free-energy maximum (d2F/dg2,0), i.e.,
a thermodynamically unstable state.

The presence of the unstable states, corresponding t
intervalg1,g,g2 on the S-shaped curve, means that dro
let deformation can be considered as a first-order phase
sition @25#. When the inclusion deformation reache
g1(L1

(th)) on increasing the electric fieldG and/or the volume
V a direct transformation occurs from weakly elongated
strongly elongated stable state. The reverse transition h
pens atg2(L1

(th)) on decreasingE and/or V. Thus, for the
S-shaped curve there are two thresholdsL1

(th).L2
(th) bound-

ing the instability area wheredg(L)/dL,0 ~Fig. 1!.
The thresholds correspond to extrema ofL(g). To esti-

mateL2
(th) andg2 we use Eq.~18! ands(g)}g1/3 for g@1.

These approximations give

g2}Ap~11 f p!Z~g2!, ~23!

L2
(th)}p25/6@~11 f p!Z~g2!#1/6. ~24!

An analytical estimation forL1
(th) is not possible becaus

sufficiently accurate approximations ofs(g) and nz(g) are
not available forg'2 –3, the range whereg1 is located.
These thresholds move towards higherL-values iff increases
but towards lowerL-values if p increases@Fig. 1 and Eq.
~24!#. For a givenp disappearance of the instability regio
~transition from the S shape to a monotonic curve! occurs
when the volume fraction of inclusions exceeds a criti
value f cr(p). Similarly, for a given f the same transition
takes place ifp becomes smaller thanpcr( f ). This two-
parameter condition of droplet instability can be conside
as a dependence of the critical ratiopcr on the volume frac-
tion. We have determined the functionpcr( f ) numerically.
Figure 3 can be considered as a ‘‘phase diagram’’ wh
shows how the behavior of the system changes with cha
of parameters. In the areaA the deformation increases mono
tonically with increase ofL. The areaB located above the
curvepcr( f ) corresponds to the S-shaped curve ofg(L) and,
consequently, to the existence of the thermodynamically
stable states. InA one minimum of the free-energy exists fo
a set of parameters (a,V,G), while in B two equilibrium
states are present. Those states correspond to a w
(g,g1) and a strong (g.g2) droplet deformation, respec
tively ~Fig. 1!. One should note~1! lim f→0 pcr( f )'20 corre-
sponds to the Garton-Krasuki result; 2! the dependence
pcr( f ) is relatively strong forf ,0.10 and weak in the vol-
ume fraction interval 0.15, f ,0.25; and~3! for a large ratio
4-4
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p.40 the instability regime can be observed at any volu
fraction, if the MGA is satisfactory.

For real heterogeneous dielectrics the electric field dis
bution at low frequencies,

v!
s (m)1~s ( in)2s (m)!nz~g!

e (m)1~e ( in)2e (m)!nz~g!
, ~25!

is defined by a small but finite components’ conductiv
s ( in),s (m) @26,27#. In contrast to the case of perfect dielectr
systems, charge accumulation at the ‘‘droplet-host’’ interfa
results in a nonzero tangential component of the Maxw
stress tensor and related liquid motions both inside and
side droplets. This effect must be taken into account to
scribe droplet deformation@28,29#. In general, combination
of the tangential stress and the hydrodynamic motion ma
analytical description of the droplet shape very complicat
except for the case of small deformations~close to the
spherical shape!. In particular, in conductive systems dropl
elongation perpendicular to the electric field is also possi
According to the leaky dielectric theory@28# the type of de-
formation is determined by the sign of the functionF:

F5p21~R211!2213~p21R21!
~2M 2113!

~5M 2115!
, ~26!

whereM5h ( in)/h (m),R5s ( in)/s (m)are the viscosity and the
conductivity ratios. ForF.0 elongation is parallel and fo
F,0 it is perpendicular to the electric field. Taking in
account conductivity such type of droplet deformation can
qualitatively considered within the free-energy minimizati
method@30#. The approach neglects the hydrodynamic
pects and generally is not suitable for quantitative desc
tion of the effect of droplets elongation in the direction pe
pendicular to the electric field. It is therefore important
know the domain where the hydrodynamic contribution
small and the present model is still applicable for quant
tive description of conductive systems.

Numerical simulations showed@31# that if the conductiv-
ity ratio R.30@p, the contribution of the tangential com
ponent is small and droplet deformation is mainly det

FIG. 3. Graphical representation of the two-parameter condi
of droplet stability/instability. The curve represents parameters
which transition occurs between the area where only one~A! or two
~B! stable states are possible.
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mined by the normal stresses. In that case the elong
ellipsoid approximation is still valid and the present mod
can be used. In a real system the conductivity ratio c
change in a very wide range, and systems with the ratio
high as.200 were experimentally investigated~see, for ex-
ample, @13,34#!. Such experiments have show
@12,13,28,29,33,34# that for systems withR@p droplet elon-
gation in a direction parallel to the electric field is observe
in agreement with the leaky dielectric theory (F.0).

The free energy of a composite system with weakly co
ducting components is given by Eq.~10!, with e (e f f) deter-
mined within, for example, the Maxwell-Wagner approa
@26,27#. Taking into account a macroscopic anisotropy th
approach results in expressions similar to Eqs.~8! and ~9!,
where all dielectric constants are replaced by the comp
conductivitiess* 5s1 ive. The real and imaginary parts o
s (e f f)* determines (e f f) ande (e f f), respectively. Those com
plicated equations are simplified if~i! the electric field satis-
fies the low-frequency condition, Eq.~25!, and the limitv
→0 can be assumed;~ii ! R@p; and ~iii ! n(g r)s

( in)@s (m).
In this case the equations fore (e f f) are reduced to Eqs.~8!
and~9! with the replacement of all the dielectric constants
corresponding real conductivities on the right side. Thus,
conductive systems, which satisfy the conditions~i!–~iii !, the
main results for the dependence of the droplet deforma
and instability thresholds on the volume fraction are s
valid with the replacement ofp by R. One should note tha
the conditions above imply that~i! e (e f f) ands (e f f) are fre-
quency independent;~ii ! charge accumulation is more impo
tant than the polarization effect; and~iii ! the condition~iii !
restricts a droplet elongation to guarantee that the field ins
elongated inclusions remains small.

As applied to conductive systems the present model
scribes the competition between the surface energy and
electric energy related with a charge accumulation at the
terface, and is valid only for areas where this competition
favorable for existence of stable elongated droplets. In
case of an S-shaped curve, and the parameters correspo
to the instability area (g1,g,g2), perturbations connecte
with the tangential electric stress and hydrodynamic for
can break up deformed droplets, prohibiting their dire
transformation into strongly elongated inclusions@13#. That
situation is different from magnetic suspensions under m
netic field, which are analogous to perfect dielectrics a
where the phase transition described above is immedia
observed@18,25#.

It is known that composite polymer systems withR@p
demonstrate on experiment stable columns oriented along
electric field@12,13#. Within the present theory such column
can be considered as a limiting case corresponding to
upper branch of equilibrium statesg.g2 ~Fig. 1!. Their for-
mation is due to fusion of smaller individual droplets@13#,
which previously formed chains along the field under t
influence of interparticle interactions by the same way
dispersed particles in electrorheological fluids@32#. This
alignment increases the efficiency of the fusion proce
which in the absence of external forces is remarkable o
for a high volume fraction of embedded particles@32#. Both
the appearance of the strongly elongated states~whenE in-

n
r

4-5



el
n

ep
e
al
ge
o
fu
sh

a
at
rin

th
tl

r-
w
o

te
pa
ili

n
o
es
e
re
d
c
n
ri

he
n
r-

-
use

a
n

om
ed
-

rst
on
ac-
en
nce
ell-
ion
e for
the
al
de-

ion
ic
e
h-
es.
u-
tion

s.

VOLCHEK et al. PHYSICAL REVIEW E 69, 011504 ~2004!
creases! and their destruction~when E decreases! demon-
strate a threshold dependence on the magnitude of the
tric field @12,13,34#. The existence of the destructio
threshold corresponds to the areaB ~Fig. 3!, where both
strong and weak deformation states of inclusions are s
rated by the thermodynamically unstable area. When du
the instability a column breaks down into a set of sm
droplets the chain arises again as the preferable ener
state. The inverse process of a column formation is not c
nected to the inclusion instability and is determined by
sion of droplets, when the space between inclusions vani
as a result of an individual droplet elongation@13#.

In general, the deformation magnitude depends on
physical parameters included in the droplet equation of st
Eq. ~13!. For example, the surface tension can change du
phase separation, so that the value ofa is not well defined.
This effect will give the same tendency in the change of
droplet deformation as the interparticle interaction. Recen
for polystyrene-poly~methyl methacrylate!-toluene mixture
(p'1,R,10) an effect of the relatively small droplet defo
mation in late stages of phase separation in comparison
earlier stages was observed and qualitatively ascribed t
increase ofa @13#.

However, in systems corresponding to the areaB ~Fig. 3!
the instability thresholds of the deformation (g1 ,g2) do not
depend on the surface tension. Therefore, for such sys
contributions of a surface tension change and the inter
ticle interaction can be separated by measuring the instab
threshold dependence on the volume fraction.

The approach developed here is exact in the case of
very dense random distribution of droplets in a liquid host
their simple-cubic arrangement. Probably, further progr
could be obtained on the basis of the microscopic mean-fi
approach@24#, which takes into account anisotropic structu
via construction of a pair distribution function of har
spheres with identical rigid dipoles. To apply this approa
to the problem of deformation this distribution functio
should be generalized for identical ellipsoidal particles o
ented along the field direction.
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A limitation of the present approach is connected with t
point-dipole approximation. Although its use for descriptio
of electrorheological fluids containing solid ellipsoidal pa
ticles gives reasonable results@35#, a more rigorous consid
eration is required for strongly elongated inclusions, beca
of deviation of the particle from the ellipsoidal shape and
contribution of high multipole moments to the polarizatio
forces.

IV. CONCLUSION

We have considered a two-component system built fr
identical dielectric or conducting liquid droplets immers
into a liquid dielectric or conducting matrix subject to a low
frequency external electric field. It was shown, for the fi
time to our best knowledge, how the droplets’ deformati
depends on their volume fraction, when the electric inter
tion between droplets in a liquid composite system is tak
into account. The expressions describing this depende
were derived in a self-consistent way based on the Maxw
Garnett approximation. The model predicts a deformat
decrease for weakly elongated and an elongation increas
extremely elongated columnlike inclusions on increase of
droplet volume fraction. Within the model, the main physic
mechanism responsible for the experimentally observed
pendence of droplets’ deformation on the volume fract
was found to be the formation of an effective anisotrop
medium. The droplet instability condition on the volum
fraction was determined numerically. The instability thres
olds increase when the inclusion volume fraction increas
Thanks to this effect, it is possible to distinguish the infl
ence of a surface tension change and the electric interac
between droplets on the deformation.
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